Long-term changes in the speed curve of a world-class butterfly swimmer

Augusto C. BARBOSA 1,2 *, Renato BARROSO ${ }^{3}$, Bjørn H. OLSTAD ${ }^{4}$, André G. ANDRADE 2
${ }^{1}$ Meazure Sport Sciences, Sao Paulo, Brazil; ${ }^{2}$ Department of Sports Sciences, School of Physical Education, Physiotherapy and Occupational Therapy, Federal University of Minas Gerais, Belo Horizonte, Brazil; ${ }^{3}$ Department of Sports Sciences, School of Physical Education, University of Campinas, Campinas, Brazil; 4Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway
*Corresponding author: Augusto C. Barrosa, Meazure Sport Sciences, Rua Pasquale Gallupi 427, 05.660-000 Sao Paulo, Brazil.
E-mail: augusto.barbosa@meazure.pro

A B S T R A C T

This study describes the changes in selected points of the speed curve, stroke rate (SR), and stroke length (SL) of an elite butterfly swimmer and examines their relationship with average speed (AS) and competitive performance. Over eight years, a male swimmer (50 and $100 \mathrm{~m}: 22.70$ and 51.47 s) underwent 18 tests to assess AS, SR, SL, intracyclic speed variation (ISV), and eight selected points of the speed curve. Peak is the maximum speed in the upward kick executed during the arm recovery; peak ${ }_{2}$ is the maximum speed in the first downward kick after the arm entered into the water; peak ${ }_{3}$ is the maximum speed during the arm pull; and peak ${ }_{4}$ is the maximum speed during the arm push combined with the second downward kick. $\mathrm{Min}_{1}, \min _{2}, \min _{3}, \min _{4}$ corresponds to the minimum speeds found respectively before each peak speed. Official competitive results in $50(50 \mathrm{BF})$ and $100 \mathrm{~m}(100 \mathrm{BF})$ within three weeks of the speed tests were registered. SR $(r=0.736)$, ISV ($r=-0.493$), peak $(r=0.555)$, $\min _{2}(r=0.558)$, and $\min _{3}(r=0.539)$ were correlated with AS. 50BF was correlated with AS $(r=-0.658)$ and peak $(r=-0.820)$, whereas 100 BF with AS $(r=-0.676)$, SR $(r=-0.571)$, peak $(r=-0.758)$, and peak $2_{2}(r=-0.594)$. AS increased by improving SR, peak ${ }_{1}$ and peak ${ }_{3}$. Increases in min_{2} and $\min _{3}$ indicate better transitions from resistive to propulsive phases. Selected points of the speed curve may predict butterfly performance.
(Cite this article as: Barbosa AC, Barroso R, Olstad BH, Andrade AG. Long-term changes in the speed curve of a world-class butterfly swimmer. J Sports Med Phys Fitness 2021;61:152-8. DOI: 10.23736/S0022-4707.20.11557-3)
Keywords: Athletic performance; Swimming; Sports; Analysis.

International swimming competitions comprise the 50 , 100 and 200 m butterfly events, and the final performance depends on the speeds in the underwater kicking during the start and turns, and on the swimming strokes executed on the water surface. The butterfly technique involves coordinating two simultaneous leg kicks with one complete arm cycle (right and left arms together) and with a full-body wave action. ${ }^{1,2}$ This movement pattern impairs propulsive continuity ${ }^{3}$ and causes intracyclic speed fluctuations within the stroke cycle, ${ }^{4}$ which are associated with a greater energy cost. ${ }^{5}$
A typical speed curve of one butterfly cycle has four peaks. ${ }^{6,7}$ The first relates to the upward kick executed during the arm recovery. The second corresponds to the down-
ward kick that occurs immediately after the arms entered into the water. The third peak refers to the arm pull combined with the second upward kick, whereas the fourth relates to the arm push combined with the second downward kick. These peak speeds are preceded by minimum points, which correspond to the transitions from predominantly resistive to propulsive phases. The long-term changes of these speed references in elite butterfly swimmers can provide useful insights regarding how they improve technique and average speed, and achieve world-class performance over time.

Previous studies have covered other critical aspects of elite swimmers' performance, such as training organization, ${ }^{8-10}$ biomechanical ${ }^{11}$ and physiological profiles, ${ }^{9,12,13}$
and provided a greater comprehension of their performance development. However, the long-term training effects on the butterfly speed curve remain underexploited, especially at the elite level.

From 2011 to 2018, we monitored a butterfly swimmer who evolved to the top 15 in the annual world ranking in 50 and 100 m butterfly. The aim of this study was to describe the long-term changes in selected points of his hip speed curve, stroke rate and stroke length, and to examine their relationships with performance, measured as average speed during experimental conditions and time in 50 and 100 m butterfly competitions.

Case report

The male swimmer analyzed (age in 2018: 26 years, height: 1.80 m , body mass: 72 kg , and arm span: 1.83 m) holds the $6^{\text {th }}$ and $41^{\text {st }}$ all-time long-course marks in the $50(22.70 \mathrm{~s})$ and 100 m butterfly (51.47 s), respectively ${ }^{14}$ (more competitive results shown in Table I). His best posi-
tions in the annual world ranking in these races were $2^{\text {nd }}$ and $14^{\text {th }}$. He won gold medals in the World University Games, Military World Games, and was finalist in the 2016 Olympic Games and in the 2017 World Championships. He had been involved in systematic training for fourteen years in 2018 and did not present any injuries during the studied period. The athlete provided verbal and written informed consent to participate in this study. Procedures complied with the Declaration of Helsinki and were approved by the University's Ethics Committee (Process: 74965917.5.0000.5404).

This is an exploratory and retrospective case study. From October 2011 to March 2018 the swimmer underwent 18 tests for technical analysis using instantaneous speed synchronized with video recording. The speedometer ${ }^{8}$ (CEFISE, Nova Odessa, Brazil - the sampling frequency improved over time, so it varied from 50 to 240 Hz) was attached to the hip during one or more $\sim 25 \mathrm{~m}$ maximal sprints with self-selected stroke rate which started from an in-water push-off. The fastest trial was retained

Table I.-Butterfly speed curve and matching 50 m and 100 m butterfly competitive performances.

Year	2011	2012	2013		2014	2015			2016					2017				2018
Test	\#1	\#2	\#3	\#4	\#5	\#6	\#7	\#8	\#9	\#10	\#11	\#12	\#13	\#14	\#15	\#16	\#17	\#18
$\mathrm{T}_{\text {Competition }}$ (days)	48	5	41	82	34	69	33	91	59	7	31	18	11	75	48	27	14	18
Type of suit	T	T	T	T	T	T	T	T	T	T	S	T	S	S	S	T	S	S
AS (m•s ${ }^{-1}$)	1.79	1.79	1.77	1.65	1.75	1.65	1.73	1.73	1.75	1.71	1.83	1.81	1.87	1.85	1.84	1.78	1.87	1.89
SR ($\mathrm{c} \cdot \mathrm{Min}^{-1}$)	55.6	51.6	53.2	49.7	52.6	50.7	59.5	58.1	54.6	50.7	55.8	58.1	58.1	59.6	60.0	56.4	56.8	65.3
SL (m)	1.93	2.08	1.99	1.99	1.99	1.96	1.75	1.79	1.93	2.02	1.97	1.86	1.93	1.86	1.84	1.89	1.97	1.73
ISV (\%)	20.4	27.6	28.4	24.5	26.5	25.4	26.2	26.1	22.6	25.3	22.9	21.9	22.6	22.6	21.9	29.1	22.0	21.7
$\operatorname{Min}_{1}\left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$	1.17	0.85	1.06	1.08	1.00	1.21	1.06	1.05	1.29	1.35	1.35	1.18	1.17	1.20	1.25	1.06	1.33	1.07
Peak $_{1}\left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$	1.65	1.84	1.45	1.47	1.76	1.72	1.68	1.76	1.75	1.82	1.86	1.67	1.99	1.64	1.90	1.92	1.91	1.93
$\operatorname{Min}_{2}\left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$	1.46	1.74	1.17	1.22	1.57	1.09	1.24	1.34	1.19	1.03	1.34	1.41	1.35	1.47	1.41	1.12	1.30	1.82
Peak $_{2}\left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$	2.07	2.10	2.46	2.08	1.94	2.07	2.29	2.23	2.27	2.33	2.46	2.36	2.28	2.43	2.32	2.60	2.36	2.30
$\operatorname{Min}_{3}\left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$	1.43	1.21	1.30	1.08	1.26	0.89	0.96	1.14	1.21	0.96	1.05	1.21	1.24	1.17	1.26	0.78	1.21	1.48
$\mathrm{Peak}_{3}\left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$	2.14	2.43	1.99	2.16	-	2.29	2.43	2.17	2.17	2.00	2.36	2.29	2.48	2.50	2.30	2.43	2.56	2.27
$\mathrm{Min}_{4}\left(\mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$	1.82	1.78	1.91	1.91	-	1.82	2.06	1.32	1.48	1.87	1.92	1.85	1.81	1.94	2.08	1.84	1.73	1.98
$\begin{aligned} & \text { Occ }_{\text {Peak 1+Min2 }} \\ & (\%) \end{aligned}$	100\%	33\%	33\%	100\%	67\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	33\%
$\mathrm{Occ}_{\text {Peak3+Min4 }}$ (\%)	100\%	100\%	100\%	100\%	0\%	67\%	67\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
$\mathrm{Peak}_{4}(\mathrm{~m} / \mathrm{s})$	2.57	2.64	2.61	2.31	2.71	2.23	2.32	2.76	2.64	2.62	2.51	2.49	2.61	2.50	2.54	2.54	2.55	2.56
50 m (s)	24.49	24.07	-	-	-	-	24.19	23.68	-	-	23.63	-	-	-	23.73	23.54	22.98	23.12
$\mathrm{Diff}_{50 \mathrm{~m}}$ (days)	8	10	-	-	-	-	2	2	-	-	1	-	-	-	1	1	14	8
100 m (s)	53.02	53.97	-	54.84	-	-	53.56	52.73	52.59	52.71	53.10	-	52.42	-	52.70	52.23	51.57	52.04
$\mathrm{Diff}_{100 \mathrm{~m}}$ (days)	8	5	-	7	-	-	2	2	16	7	1	-	11	-	1	1	14	8

$\mathrm{T}_{\text {Competition }}$: remaining time for the main competition of the season; T : regular trunks; S : competitive suit; AS: average speed; SR: stroke rate; SL: stroke length; ISV: intracyclic speed variation; Min $_{1}$: minimum speed before the upward kick during arm recovery; Peak ${ }_{1}$: peak speed of the upward kick during arm recovery; Min ${ }_{2}$: minimum speed before the first downward kick after the arm entry; Peak 2 : peak speed of the first downward kick after the arm entry; Min ${ }_{3}$: minimum speed before the arm pull combined with the second upward kick; Peak $_{3}$: peak speed during the arm pull combined with the second upward kick; Min ${ }_{4}$: minimum speed before the arm push combined with the second downward kick; Peak $_{4}$: peak speed during the arm push combined with the second downward kick; Occ ${ }_{\text {Peak1+Min2 }}$: percentual occurrence of the upward kick curve (i.e. Peak $_{1}$ and Min_{2}) considering the 3 cycles analyzed; Occ Peak $3+$ Min4 : percentual occurrence of the arm pull curve (i.e. Peak ${ }_{3}$ and Min_{4}) considering the 3 cycles analyzed; 50 m : official time for the 50 m butterfly; 100 m : official time for the 100 m butterfly; Diff $\mathrm{S}_{5 \mathrm{~m}}$: number of days between the assessment and 50 m result; Diff 100 m : number of days between the assessment and 100 m result.
for analysis. The swimmer consistently broke the water surface near the 10 m mark. Therefore, a favorable perspective of the stroke could be captured in the first cycles. An underwater cabled camera was attached to either a trolley or to a monopod and recorded the trial at 30 Hz in realtime. The trolley was pulled alongside the pool at the same speed as the swimmer, whereas the monopod was positioned at the $15-\mathrm{m}$ mark and was rotated by the operator to follow the swimmer's displacement. A custom-designed software (Forward ${ }^{\circledR}$, Meazure Sport Sciences, Sao Paulo, Brazil) synchronized both speed and video data by interpolation. A fourth-order Butterworth low-pass digital filter with a cut-off frequency of 8 Hz smoothed the speed data.

The break-out and the first cycle were omitted to attenuate both push-off and underwater kicking effects. The three next cycles were used to calculate the average speed, stroke rate ($[3 \cdot 60] /$ time of the 3 cycles), stroke length (average speed/stroke rate), and intracyclic speed variation as represented by the coefficient of variation of hip speed. Additionally, the selected speed points shown in Figure 1 were marked in each of the three cycles and provided the following variables:

- Peak $_{1}$, the maximum speed point found in the upward kick, which happened during the arm recovery;
- Min_{1}, the minimum speed point immediately before Peak $_{1}$;
- Peak $_{2}$, the maximum speed point found in the first downward kick, which happened after the arm entry into the water;
- Min_{2}, the minimum speed point immediately before Peak
- Peak $_{3}$, the maximum speed point found in the arm pull-combined with the second upward kick;

Figure 1.-A typical butterfly speed curve, the eight speed points and their respective stroke positions.

- Min_{3}, the minimum speed point immediately before Peak $_{3}$;
- Peak_{4}, the maximum speed point found in the arm push combined with the second downward kick;
- Min_{4}, the minimum speed point immediately before Peak $_{4}$.

Minimum and peak speed points represent important actions and/or positions within the stroke. $6,7,15$ In each trial, the average value of these variables was retained for analysis. The upward kick and the pull curves - respectively represented from $\min _{1}$ to $\min _{2}$ and from $\min _{3}$ to $\min _{4}$ - were not detected in all strokes, so the average of the found values was considered for peak $k_{1}, \min _{2}$, peak ${ }_{3}$, and $\min _{4}$, whereas their occurrence is reported in Table I. In ten tests, the athlete performed two or more trials, so we could calculate the CV and the typical error of measurement, which were 0.8% and $0.02 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for average speed, 3.1% and 2.1 cycles $\cdot \mathrm{min}^{-1}$ for stroke rate, 2.8% and 0.06 m for stroke length, 5.6% and 1.6% for intracyclic speed variation, 3.8% and $0.09 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for peak, 4.9% and 0.11 $\mathrm{m} \cdot \mathrm{s}^{-1}$ for peak $2,3.4 \%$ and $0.09 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for peak ${ }_{3}, 2.2 \%$ and $0.06 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for peak $4,4.6 \%$ and $0.07 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for $\mathrm{min}_{1}, 6.1 \%$ and $0.09 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for $\min _{2}, 7.3 \%$ and $0.09 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for min_{3}, and 4.1% and $0.10 \mathrm{~m} \cdot \mathrm{~s}^{-1}$ for min_{4}, respectively.

Competitive performances in butterfly in long course within three weeks of the speed measurements were registered. The best official time out of the heat, semifinal or final was retained. The time difference in days in-between each measurement and the main competition of the respective season was also computed. The starting dates of the three annual national championships and the Rio 2016 Olympic Games were the references.

Absolute data presented the time effects. Shapiro-Wilk test checked the assumptions of normally-distributed samples, whereas the presence of outliers was identified by the outlier labelling rule. ${ }^{16}$ Pearson or Spearman (either when normality was not confirmed or outliers were identified) correlation coefficients assessed the relationships between variables and, when significant, were interpreted as: >0.30 : small, $0.31-0.49$: moderate, $0.50-0.69$: large, $0.70-0.89$: very large, and $0.90-1.00$: nearly perfect. ${ }^{17}$ The significance level was set at $\mathrm{P} \leq 0.05$. The analyses were conducted using IBM SPSS for Windows (Version 25.0, Armonk, NY, USA).

Data from the speed curves analyzed from 2011 to 2018 are in Table I. Figure 2 exemplifies the speed points and their respective stroke positions at the beginning (\#3) and end (\#18) of the analyzed period. These tests used the trolley and provided a better view of the stroke positions. A

COPYRIGHT ${ }^{\odot} 2021$ EDIZIONI MINERVA MEDICA

Figure 2.-Comparison between the speed points and their respective stroke positions at the beginning (2013; test \#3) and end (2018; test \#18) of the analyzed period. These tests used a trolley and provided a better view of the stroke positions.
total of nine and 13 official competitive performances occurred within three weeks of the speed tests for the 50 m and 100 m , respectively. The correlations between variables and average speed and 50 m and 100 m competitive performances are in Table II.

Discussion

This is the first study that analyzed the long-term changes in the hip speed curve of an elite butterfly swimmer, and our main findings were: 1) over time, the average speed measured by the speedometer increased $\sim 5 \%$ from the first to the last assessment and the swimmer tended to swim faster closer to the main competitions; 2) a higher avarage speed is related to a reduced intracyclic speed variation; 3) the stroke rate increased and considerably influenced average speed; 4) changes in the upward kick (peak $_{1}$), in the pull phase (peak ${ }_{3}$), and in the transitions from resistive to propulsive phases (i.e. $\min _{2}$ and $\min _{3}$) correlated with the average speed; and 5) average speed and peak ${ }_{1}$ correlated with both $50-$ and $100-\mathrm{m}$ results, whereas peak ${ }_{2}$ and stroke rate correlated only with the $100-\mathrm{m}$ results. These variables may predict competitive performances.

Swimming speed is the product of stroke rate and stroke length. For the current swimmer, the speed improvements were very largely related to the increase of the stroke rate ($r=0.736, \mathrm{P}<0.0001$). For instance, the comparison between the four slowest (\#4, \#6, \#8 and \#11) and the four fastest assessments (\#13, \#14, \#17 and \#18) (Table I) indicates a 10.7% increase in average swimming speed $\left(1.69 \pm 0.04 \mathrm{vs} .1 .87 \pm 0.02 \mathrm{~m} \cdot \mathrm{~s}^{-1}\right)$, accompanied by a 13.9% augment in stroke rate ($52.7 \pm 4.6 v s .60 .0 \pm 3.7 \mathrm{c} \cdot \mathrm{min}^{-1}$), and only a 2.9% reduction in stroke length $(1.93 \pm 0.13 \mathrm{~m} v s$. $1.87 \pm 0.10 \mathrm{~m})$. These results are not in line with some previous studies, which verified the increase in stroke length as the regular path for swimmers to improve speed. ${ }^{8,18}$ In

Table II.-Correlations between speed variables, average speed and 50 m and 100 m butterfly performances.

	Average speed			50 m butterfly			100 m butterfly		
	r	P	Interpretation	r	p	Interpretation	r	P	Interpretation
$\mathrm{T}_{\text {Competition }}$	-0.462*	0.054*	Moderate*	-	-	-	-	-	-
Average speed	-	-	-	-0.658*	0.054*	Large*	-0.676*	0.011*	Large*
Stroke rate	0.736*	<0.0001*	Very large*	-0.445	0.231	-	-0.571*	0.041*	Large*
Stroke length	-0.282	0.258	-	0.147	0.705	-	0.308	0.305	-
ISV	-0.493*	0.038*	Moderate*	0.122	0.754	-	0.287	0.342	-
min_{1}	0.150	0.552	-	-0.347	0.360	-	-0.443	0.130	-
Peak ${ }_{1}$	0.555*	0.017*	Large*	-0.820*	0.007	Very large*	-0.758*	0.003	Very large*
min_{2}	0.558*	0.016*	Large*	-0.044	0.910	-	0.014	0.963	崖
Peak ${ }_{2}$	0.449	0.062	-	-0.557	0.119	-	-0.594*	0.032*	Large*
min_{3}	0.539*	0.021*	Large*	-0.033	0.934	-	-0.177	0.564	-
Peak_{3}	0.506*	0.038*	Large*	-0.388	0.302	-	-0.249	0.413	-
min_{4}	0.163 \#	0.532	-	0.093	0.812	-	0.176 \#	0.566	-
Peak_{4}	0.056 \#	0.826	-	0.033 \#	0.932	-	-0.492	0.088	-

$\mathrm{T}_{\text {Competition }}$: remaining time for the main competition of the season; ISV: intracyclic speed variation; min $_{1}$: minimum speed before the upward kick during arm recovery; Peak $_{1}$: peak speed of the upward kick during arm recovery; $\min _{2}$: minimum speed before the first downward kick after the arm entry; Peak ${ }_{2}$: peak speed of the first downward kick after the arm entry; $\min _{3}$: minimum speed before the arm pull combined with the second upward kick; Peak ${ }_{3}$: peak speed during the arm pull combined with the second upward kick; $\min _{4}$: minimum speed before the arm push combined with the second downward kick; Peak ${ }_{4}$: peak speed during the arm push combined with the second downward kick.
\#Spearman correlation coefficient; *significant correlations ($\mathrm{P} \leq 0.05$).

COPYRIGHT ${ }^{\odot} 2021$ EDIZIONI MINERVA MEDICA

other words, elite athletes and their staff may find individualized solutions for performance development that differ from the patterns and trends reported in the literature.

The moderate and negative correlation between the average speed and the time for the main competition of the season $(r=-0.462, \mathrm{P}=0.054)$ indicates that the swimmer tended to swim faster closer to the main competitions. This tendency may be affected during intensified training periods when athletes experience accumulated fatigue and eventually a reduction in performance. ${ }^{19,20}$ This might be the case of assessment $\# 16$, in which the average speed reached 95.2% of his personal best speed result at that time (i.e. \#13 in 2016), whereas the other three were above 98.5%. It is noteworthy that all tests in 2017 were part of the same training cycle.

According to previous studies, the intracyclic speed variation in men may range from 9.1 to $\sim 30 \%$ in all-out paces. ${ }^{4,5,21,22}$ The lower value is considerably different from our results, which varied from 20.4 to 29.1%. The intracyclic speed variation is a consequence of the butterfly technique ${ }^{3}$ and can be an indirect measure of swimming efficiency as Barbosa et al. ${ }^{5}$ verified that the energy cost is strongly associated with the speed fluctuation of the center of the mass in the butterfly stroke ($r=0.807, \mathrm{P}<0.001$). Herein, there was a moderate and inverse correlation between speed fluctuations and average swimming speed. Based on prior studies,,${ }^{4,22}$ it is conceivable that higher stroke rates and; therefore, higher segmental velocities have shifted the stroke technique towards a greater propulsive continuity and reduced speed fluctuations.

Certain speed points also correlated to the average speed. As they refer to specific actions and/or positions within the stroke, ${ }^{6,7,15}$ their changes can provide insights about technique and its effect on average speed. The large association between the upward kick executed during the arm recovery $\left(\right.$ peak $\left._{1}\right)$ and average speed, 50 and 100 m performances indicates that this leg movement contributes to a faster stroke in both experimental and competitive conditions. The importance of the upward phase for underwater kick performance was previously demonstrated, ${ }^{23}$ and its effectiveness seems related to the kinetic energy transferred from the swimmer to the water and vice versa, resulting in body acceleration. Ungerechts et al..24 suggested that the generation of vortices can be improved by "emphasizing the reversal action of the kick using, as much as possible, whip-like action." Swimmers should then strive to increase effectiveness by combining a good upward kick while maintaining the hips close to the water surface, that is, a more horizontal body position. Importantly, this
action should be coordinated with other movements in the stroke and in repeated cycles, ${ }^{25}$ so the kinetic energy from the body undulation can be properly transmitted caudally. ${ }^{1,2}$ Keeping the hip close to the water surface during the upward kick was one of the main technical modifications this swimmer incorporated over the years, which is the transition from $\min _{1}$ to peak ${ }_{1}$ in Figure 2. Future studies on how to execute the up kick effectively during the butterfly stroke are encouraged.

The large association between the first downward kick after the arm entry $\left(\right.$ peak $\left._{2}\right)$ with 100 m butterfly performance demonstrates that its augmentation has a positive influence on the whole stroke swimming speed in competition. Despite non-significant, the moderate and large correlations between peak ${ }_{2}$ and the average speed and 50 m butterfly performance, respectively, may reinforce the practical importance of this leg kick action for this swimmer's performance, especially considering his competitive level, in which medals are decided by marginal differences. It is important though that either dry-land or in-water strategies to increase the lower limbs' power do not shift knees and hips towards excessive flexions, as these changes may also increase drag and eventually compromise a more horizontal body position and the caudal transmission of energy. ${ }^{1}$ Besides, directing the head and arms to the bottom as shown by peak ${ }_{2}$ changes in Figure 2, and keeping the arms apart beyond the width of the shoulders may also hamper this peak speed value. These actions combined or not have the potential to expand the frontal projected area and therefore compete with the downward propulsive kick by increasing drag.

Keeping the head between the arms instead of directing it to the bottom was an important technical change of this swimmer, which is shown in the transition from $\min _{2}$ to peak ${ }_{2}$ in Figure 2. Besides reducing the drag, this action/position favors the connection between arms and trunk during the arm-catch phase (i.e. $\min _{3}$) and provides a stronger pull (i.e. peak ${ }_{3}$). In other words, when the head is not directed towards the bottom, the elbows get below the shoulders more quickly, which is a more mechanically advantageous position for the pull. ${ }^{26}$ In addition, the pull phase can be more useful to move the body forward instead of upwards. ${ }^{7}$ It is then suggested that this technical change may also have contributed to increase $\min _{3}$ and peak ${ }_{3}$ over time. This is represented by the changes in $\min _{3}$ and peak ${ }_{3}$ in Figure 2. In fact, the correlation analysis revealed a positive and large relationship between the average speed and these speed points $\left(r=0.539\right.$ and .506 for $\min _{3}$ and peak ${ }_{3}$, respectively).

COPYRIGHT ${ }^{\circledR} 2021$ EDIZIONI MINERVA MEDICA

The minimum points represent the transitions from predominantly resistive to propulsive phases. In general, the positive correlations of $\min _{2}$ and $\min _{3}$ with the average speed and their increase over time highlight their importance for the butterfly stroke. Similarly,Takagi et al. ${ }^{27}$ verified that the faster breaststrokers tended to extend the arms' glide and yet present higher minimum speed values, and suggested this non-propulsive phase as a key factor for performance. In the front crawl though, Barbosa et al..8 found that the performance changes of an elite swimmer were more associated with increases in the peak values. Then, changing the lower points of the curve in elite swimmers may be more relevant for butterfly and breaststroke, in which there is propulsive discontinuity.

Average speed, peak $_{1}$ and peak ${ }_{2}$ presented large to very large correlations with 50 and 100 m butterfly performances (peak ${ }_{2}$ only for the 100 m). These results suggest that the changes in the speed curve transferred to competition, which is more complex and requires high levels of physical, psychological, and technical skills together. Besides, the fact that stroke rate and these speed curve points can predict competitive performances for this swimmer is of practical relevance during training routines as it is possible to analyze the impact of the training load through a $25-\mathrm{m}$ sprint.

The large correlation between the stroke rate and the $100-\mathrm{m}$ performance is also of interest. Detecting that a higher stroke rate is beneficial for the swimming speed during tests should be followed by a serious training process so that the swimmer can withstand it during 100 m in competition. Notably, the test results herein relate specifically to the clean swimming stroke in a non-fatigued condition, as the short duration of the testing procedure ($\sim 10-12 \mathrm{~s}$) prevents the occurrence of a high level of acidosis. ${ }^{28}$ The competition is unequivocally more demanding. Also, improving other features such as the dive, the underwater kick, the water break-out, the finish, and the turn, may be paths for the progression of competitive results.

Limitations of the study

Finally, some limitations may be raised: 1) our results apply for the swimmer analyzed and different aspects may be determinant to other swimmers with distinct physical, technical and anthropometric characteristics; 2) more speed assessments would provide a better view of his within-year changes; 3) although very practical to combine with athletes' training routines, the hip does not correctly represent the speed variations of the center of mass;6, 29 and 4) the
use of different suits throughout the assessments may have influenced the speed curve. Tests with competitive suits became more accessible due to a sponsorship and were an attempt to assess the stroke closer to the competitive condition. Nevertheless, our results expand our understanding of elite performance development and can be useful for both sports scientists and practitioners.

Conclusions

This butterfly swimmer improved his swimming speed by increasing the stroke rate and the peak speeds in the upward kick executed during arm recovery and in the armpull phase. He also increased two minimum speed points, indicating better transitions from resistive to propulsive phases. Finally, parameters extracted from the speed curve are related to 50 and 100 m competitive times and may predict performance.

References

1. Sanders RH, Cappaert JM, Devlin RK. Wave characteristics of butterfly swimming. J Biomech 1995;28:9-16.
2. Seifert L, Delignieres D, Boulesteix L, Chollet D. Effect of expertise on butterfly stroke coordination. J Sports Sci 2007;25:131-41.
3. Chollet D, Seifert L, Boulesteix L, Carter M. Arm to leg coordination in elite butterfly swimmers. Int J Sports Med 2006;27:322-9.
4. Barbosa TM, Fernandes RJ, Morouco P, Vilas-Boas JP. Predicting the intra-cyclic variation of the velocity of the centre of mass from segmental velocities in butterfly stroke: a pilot study. J Sports Sci Med 2008;7:201-9.
5. Barbosa TM, Keskinen KL, Fernandes R, Colaço P, Lima AB, VilasBoas JP. Energy cost and intracyclic variation of the velocity of the centre of mass in butterfly stroke. Eur J Appl Physiol 2005;93:519-23.
6. Mason B, Tong Z, Richards RJ. Propulsion in the butterfly stroke. In: MacLaren D, Reilly T, Lees A, editors. Biomechanics and medicine in swimming. Swimming science VI. Abington, PA: Spon; 1992. p.81-6.
7. Staniak Z, Buśko K, Górski M, Pastuszak A. Accelerometer profile of motion of the pelvic girdle in butterfly swimming. Acta Bioeng Biomech 2018;20:159-67.
8. Barbosa AC, Valadão PF, Wilke CF, et al. The road to 21 seconds: A case report of a 2016 Olympic swimming sprinter. Int J Sports Sci Coaching 2019;14:393-405.
9. Hellard P, Scordia C, Avalos M, Mujika I, Pyne DB. Modelling of optimal training load patterns during the 11 weeks preceding major competition in elite swimmers. Appl Physiol Nutr Metab 2017;42:1106-17.
10. Słomiński P, Nowacka A. Swimming - the Structure and Volume of Training Loads in the Four-Year Training Cycle of an Elite Olympic Athlete. Pol J Sport Tour 2017;24:162-9.
11. Costa MJ, Bragada JA, Marinho DA, Silva AJ, Barbosa TM. Longitudinal interventions in elite swimming: a systematic review based on energetics, biomechanics, and performance. J Strength Cond Res 2012;26:2006-16.
12. Pyne DB, Lee H, Swanwick KM. Monitoring the lactate threshold in world-ranked swimmers. Med Sci Sports Exerc 2001;33:291-7.
13. Thompson KG, Garland SW. Assessment of an international breaststroke swimmer using a race readiness test. Int J Sports Physiol Perform 2009;4:139-43.
14. Fina homepage. Fina; [Internet]. Available from: http://www.fina.org/ [cited 2020, Oct 29].
15. Craig AB, Termin B, Pendergast DR. Simultaneous recordings of velocity and video during swimming. Port J Sport Sci 2006;6:32-5.
16. Hoaglin DC, Iglewicz B, Tukey JW. Performance of some resistant rules for outlier labeling. J Am Stat Assoc 1986;81:991-9.
17. Hopkins WG, Marshall SW, Batterham AM, Hanin J. Progressive statistics for studies in sports medicine and exercise science. Med Sci Sports Exerc 2009;41:3-13.
18. Craig AB Jr, Skehan PL, Pawelczyk JA, Boomer WL. Velocity, stroke rate, and distance per stroke during elite swimming competition. Med Sci Sports Exerc 1985;17:625-34.
19. Coutts AJ, Slattery KM, Wallace LK. Practical tests for monitoring performance, fatigue and recovery in triathletes. J Sci Med Sport 2007;10:372-81.
20. Aubry A, Hausswirth C, Louis J, Coutts AJ, LE Meur Y. Functional overreaching: the key to peak performance during the taper? Med Sci Sports Exerc 2014;46:1769-77.
21. Barbosa TM, Goh WX, Morais JE, Costa MJ. Variation of linear and nonlinear parameters in the swim strokes according to the level of expertise. Mot Contr 2017;21:312-26.
22. Seifert L, Boulesteix L, Chollet D, Vilas-Boas JP. Differences in spa-tial-temporal parameters and arm-leg coordination in butterfly stroke as a function of race pace, skill and gender. Hum Mov Sci 2008;27:96-111.
23. Atkison RR, Dickey JP, Dragunas A, Nolte V. Importance of sagittal kick symmetry for underwater dolphin kick performance. Hum Mov Sci 2014;33:298-311.
24. Ungerechts B, Persyn U, Colman V. Application of vortex flow formation to self-propulsion in water. In: Keskinen K, Komi P, Hollander A, editors. Proceedings of the VIII International Symposium on Biomechanics and Medicine in Swimming. Jyvaskyla: University of Jyvaskyla; 1999. p. 95-100.
25. Strzała M, Stanula A, Krężałek P, Ostrowski A, Kaca M, Głąb G. Butterfly sprint swimming technique, analysis of somatic and spatial-temporal coordination variables. J Hum Kinet 2017;60:51-62.
26. Havriluk R. Analyzing hand force in swimming: bilateral symmetry. Am Swim 2007;34-37.
27. Takagi H, Sugimoto S, Nishijima N, Wilson B. Differences in stroke phases, arm-leg coordination and velocity fluctuation due to event, gender and performance level in breaststroke. Sports Biomech 2004;3:15-27.
28. Rodrigues F, Mader A. Energy system in swimming. In: Seifert L, Chollet D, Mujika I, editors. World book of swimming: from science to performance. Hauppauge, NY: Nova Science Publishers, Inc.; 2010. p.225-40.
29. Barbosa T, Silva J, Sousa F, Vilas-Boas J. Comparative study of the responses of kinematical variables from the hip and the centre of mass in butterfliers. In: Chatard J, editor. Biomechanics and medicine in swimming IX. Saint-Etienne: Publications de l'Université de Saint-Etienne; 2003. p.93-8.

Conflicts of interest.-The authors certify that there is no conflict of interest with any financial organization regarding the material discussed in the manuscript. Authors' contributions.-All authors read and approved the final version of the manuscript.
Acknowledgements.-The authors acknowledge the participant for authorizing the disclosure of such valuable data and the Minas Tenis Clube for the support given to the technical staff in the preparation of this study.
History.-Article first published online: October 22, 2020. - Manuscript accepted: October 13, 2020. - Manuscript revised: September 28, 2020. - Manuscript received: July 23, 2020.

